3.2.6 \(\int \frac {(A+C \cos ^2(c+d x)) \sec (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx\) [106]

3.2.6.1 Optimal result
3.2.6.2 Mathematica [A] (verified)
3.2.6.3 Rubi [A] (verified)
3.2.6.4 Maple [B] (verified)
3.2.6.5 Fricas [B] (verification not implemented)
3.2.6.6 Sympy [F]
3.2.6.7 Maxima [B] (verification not implemented)
3.2.6.8 Giac [A] (verification not implemented)
3.2.6.9 Mupad [F(-1)]

3.2.6.1 Optimal result

Integrand size = 33, antiderivative size = 115 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {2 A \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}-\frac {\sqrt {2} (A+C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}+\frac {2 C \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}} \]

output
2*A*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d/a^(1/2)-(A+C)*arc 
tanh(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/(a+a*cos(d*x+c))^(1/2))*2^(1/2)/d/a^(1 
/2)+2*C*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)
 
3.2.6.2 Mathematica [A] (verified)

Time = 0.19 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.72 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {2 \cos \left (\frac {1}{2} (c+d x)\right ) \left (-\left ((A+C) \text {arctanh}\left (\sin \left (\frac {1}{2} (c+d x)\right )\right )\right )+\sqrt {2} A \text {arctanh}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )+2 C \sin \left (\frac {1}{2} (c+d x)\right )\right )}{d \sqrt {a (1+\cos (c+d x))}} \]

input
Integrate[((A + C*Cos[c + d*x]^2)*Sec[c + d*x])/Sqrt[a + a*Cos[c + d*x]],x 
]
 
output
(2*Cos[(c + d*x)/2]*(-((A + C)*ArcTanh[Sin[(c + d*x)/2]]) + Sqrt[2]*A*ArcT 
anh[Sqrt[2]*Sin[(c + d*x)/2]] + 2*C*Sin[(c + d*x)/2]))/(d*Sqrt[a*(1 + Cos[ 
c + d*x])])
 
3.2.6.3 Rubi [A] (verified)

Time = 0.71 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.04, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.303, Rules used = {3042, 3525, 27, 3042, 3464, 3042, 3128, 219, 3252, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec (c+d x) \left (A+C \cos ^2(c+d x)\right )}{\sqrt {a \cos (c+d x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a \sin \left (c+d x+\frac {\pi }{2}\right )+a}}dx\)

\(\Big \downarrow \) 3525

\(\displaystyle \frac {2 \int \frac {(a A-a C \cos (c+d x)) \sec (c+d x)}{2 \sqrt {\cos (c+d x) a+a}}dx}{a}+\frac {2 C \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {(a A-a C \cos (c+d x)) \sec (c+d x)}{\sqrt {\cos (c+d x) a+a}}dx}{a}+\frac {2 C \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a A-a C \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{a}+\frac {2 C \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3464

\(\displaystyle \frac {A \int \sqrt {\cos (c+d x) a+a} \sec (c+d x)dx-a (A+C) \int \frac {1}{\sqrt {\cos (c+d x) a+a}}dx}{a}+\frac {2 C \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {A \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx-a (A+C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{a}+\frac {2 C \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3128

\(\displaystyle \frac {\frac {2 a (A+C) \int \frac {1}{2 a-\frac {a^2 \sin ^2(c+d x)}{\cos (c+d x) a+a}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}+A \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a}+\frac {2 C \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {A \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx-\frac {\sqrt {2} \sqrt {a} (A+C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{d}}{a}+\frac {2 C \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3252

\(\displaystyle \frac {-\frac {2 a A \int \frac {1}{a-\frac {a^2 \sin ^2(c+d x)}{\cos (c+d x) a+a}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}-\frac {\sqrt {2} \sqrt {a} (A+C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{d}}{a}+\frac {2 C \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {2 \sqrt {a} A \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}-\frac {\sqrt {2} \sqrt {a} (A+C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{d}}{a}+\frac {2 C \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\)

input
Int[((A + C*Cos[c + d*x]^2)*Sec[c + d*x])/Sqrt[a + a*Cos[c + d*x]],x]
 
output
((2*Sqrt[a]*A*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d 
- (Sqrt[2]*Sqrt[a]*(A + C)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a 
+ a*Cos[c + d*x]])])/d)/a + (2*C*Sin[c + d*x])/(d*Sqrt[a + a*Cos[c + d*x]] 
)
 

3.2.6.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3128
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-2/d 
Subst[Int[1/(2*a - x^2), x], x, b*(Cos[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 3252
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)]), x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b*c + a*d - d*x^2), 
x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3464
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + 
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[(A 
*b - a*B)/(b*c - a*d)   Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Simp[(B*c 
- A*d)/(b*c - a*d)   Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], 
 x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3525
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
 Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1 
)/(d*f*(m + n + 2))), x] + Simp[1/(b*d*(m + n + 2))   Int[(a + b*Sin[e + f* 
x])^m*(c + d*Sin[e + f*x])^n*Simp[A*b*d*(m + n + 2) + C*(a*c*m + b*d*(n + 1 
)) + C*(a*d*m - b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, 
 e, f, A, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 
 - d^2, 0] &&  !LtQ[m, -2^(-1)] && NeQ[m + n + 2, 0]
 
3.2.6.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(296\) vs. \(2(98)=196\).

Time = 8.38 (sec) , antiderivative size = 297, normalized size of antiderivative = 2.58

method result size
default \(-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) a A +\sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) a C -A \ln \left (\frac {4 \sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) a -A \ln \left (-\frac {4 \left (\sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) a -2 C \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\right )}{a^{\frac {3}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(297\)
parts \(-\frac {A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\sqrt {2}\, \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right )-\ln \left (\frac {4 \sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right )-\ln \left (-\frac {4 \left (\sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right )\right )}{\sqrt {a}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}+\frac {C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (2 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}-\ln \left (\frac {2 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+2 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) a \right ) \sqrt {2}}{a^{\frac {3}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(348\)

input
int((A+C*cos(d*x+c)^2)*sec(d*x+c)/(a+cos(d*x+c)*a)^(1/2),x,method=_RETURNV 
ERBOSE)
 
output
-cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2^(1/2)*ln(4*(a^(1/2)* 
(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a)/cos(1/2*d*x+1/2*c))*a*A+2^(1/2)*ln(4*(a^ 
(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a)/cos(1/2*d*x+1/2*c))*a*C-A*ln(4/(2* 
cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1 
/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*a-A*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/ 
2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a 
^(1/2)-2*a))*a-2*C*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2))/a^(3/2) 
/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d
 
3.2.6.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 221 vs. \(2 (98) = 196\).

Time = 0.29 (sec) , antiderivative size = 221, normalized size of antiderivative = 1.92 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {{\left (A \cos \left (d x + c\right ) + A\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, \sqrt {a \cos \left (d x + c\right ) + a} C \sin \left (d x + c\right ) + \frac {\sqrt {2} {\left ({\left (A + C\right )} a \cos \left (d x + c\right ) + {\left (A + C\right )} a\right )} \log \left (-\frac {\cos \left (d x + c\right )^{2} + \frac {2 \, \sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt {a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{\sqrt {a}}}{2 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \]

input
integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)/(a+a*cos(d*x+c))^(1/2),x, algorith 
m="fricas")
 
output
1/2*((A*cos(d*x + c) + A)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c) 
^2 - 4*sqrt(a*cos(d*x + c) + a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 
8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*sqrt(a*cos(d*x + c) + a)*C*sin 
(d*x + c) + sqrt(2)*((A + C)*a*cos(d*x + c) + (A + C)*a)*log(-(cos(d*x + c 
)^2 + 2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c)/sqrt(a) - 2*cos(d*x 
+ c) - 3)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1))/sqrt(a))/(a*d*cos(d*x + c 
) + a*d)
 
3.2.6.6 Sympy [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\int \frac {\left (A + C \cos ^{2}{\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}}{\sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )}}\, dx \]

input
integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)/(a+a*cos(d*x+c))**(1/2),x)
 
output
Integral((A + C*cos(c + d*x)**2)*sec(c + d*x)/sqrt(a*(cos(c + d*x) + 1)), 
x)
 
3.2.6.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 18949 vs. \(2 (98) = 196\).

Time = 0.72 (sec) , antiderivative size = 18949, normalized size of antiderivative = 164.77 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\text {Too large to display} \]

input
integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)/(a+a*cos(d*x+c))^(1/2),x, algorith 
m="maxima")
 
output
-1/12*(12*sqrt(2)*cos(3/2*d*x + 3/2*c)^3*sin(d*x + c) - 12*(sqrt(2)*cos(d* 
x + c) + sqrt(2))*sin(3/2*d*x + 3/2*c)^3 - 8*sqrt(2)*sin(1/2*d*x + 1/2*c)^ 
3 + ((3*sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*si 
n(1/2*d*x + 1/2*c) + 1) - 3*sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d 
*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) - 8*sqrt(2)*sin(1/2*d*x + 1/2* 
c))*cos(d*x + c)^2 + (3*sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 
 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 3*sqrt(2)*log(cos(1/2*d*x + 1/2* 
c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) - 8*sqrt(2)*si 
n(1/2*d*x + 1/2*c))*sin(d*x + c)^2 + 24*sqrt(2)*cos(1/2*d*x + 1/2*c)*sin(d 
*x + c) + 2*(3*sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 
 + 2*sin(1/2*d*x + 1/2*c) + 1) - 3*sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + si 
n(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) - 8*sqrt(2)*sin(1/2*d*x 
 + 1/2*c))*cos(d*x + c) + 3*sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d 
*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 3*sqrt(2)*log(cos(1/2*d*x + 
1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) - 8*sqrt(2 
)*sin(1/2*d*x + 1/2*c))*cos(3/2*d*x + 3/2*c)^2 - (8*sqrt(2)*sin(1/2*d*x + 
1/2*c)^3 - 3*(sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 
+ 2*sin(1/2*d*x + 1/2*c) + 1) - sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1 
/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(1/2*d*x + 1/2*c)^2 - 
3*(sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(...
 
3.2.6.8 Giac [A] (verification not implemented)

Time = 0.43 (sec) , antiderivative size = 181, normalized size of antiderivative = 1.57 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {\frac {4 \, \sqrt {2} C \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {a} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {2 \, A \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right )}{\sqrt {a} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {\sqrt {2} {\left (A \sqrt {a} + C \sqrt {a}\right )} \log \left (\sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} + \frac {\sqrt {2} {\left (A \sqrt {a} + C \sqrt {a}\right )} \log \left (-\sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{a \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{2 \, d} \]

input
integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)/(a+a*cos(d*x+c))^(1/2),x, algorith 
m="giac")
 
output
1/2*(4*sqrt(2)*C*sin(1/2*d*x + 1/2*c)/(sqrt(a)*sgn(cos(1/2*d*x + 1/2*c))) 
- 2*A*log(abs(-2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c))/abs(2*sqrt(2) + 4*sin(1 
/2*d*x + 1/2*c)))/(sqrt(a)*sgn(cos(1/2*d*x + 1/2*c))) - sqrt(2)*(A*sqrt(a) 
 + C*sqrt(a))*log(sin(1/2*d*x + 1/2*c) + 1)/(a*sgn(cos(1/2*d*x + 1/2*c))) 
+ sqrt(2)*(A*sqrt(a) + C*sqrt(a))*log(-sin(1/2*d*x + 1/2*c) + 1)/(a*sgn(co 
s(1/2*d*x + 1/2*c))))/d
 
3.2.6.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec (c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+A}{\cos \left (c+d\,x\right )\,\sqrt {a+a\,\cos \left (c+d\,x\right )}} \,d x \]

input
int((A + C*cos(c + d*x)^2)/(cos(c + d*x)*(a + a*cos(c + d*x))^(1/2)),x)
 
output
int((A + C*cos(c + d*x)^2)/(cos(c + d*x)*(a + a*cos(c + d*x))^(1/2)), x)